Algae: Range of thallus structure conti....

Presented by: Dr. Ankit Kumar Singh

Assistant Professor Department of Botany Marwari College Lalit Narayan Mithila University Darbhanga ankitbhu30@gmail.com

Lecture No.17

(B) Branched filaments

- It is formed by repeated transverse divisions of lateral outgrowth of cells.
- The branching of filaments may be true or false.
- The false branch does not arise as lateral outgrowths but it is formed by breakage of trichome due to death or decay at the point of heterocyst.
- The broken end emerges out of the mucilaginous sheath in the form of a branch e.g., *Scytonema* (Cyanophyceae).
- In *Scytonema* false branching arise almost always in pairs at some distance from heterocyst.

Figure: Branched filamentous algae; Scytonema (False branching)

- True branches which arise as lateral outgrowths, may results in the following three types of filaments.
- i) Simple filaments
- ii) Heterotrichous
- iii) Pseudoparenchymatous

i) Simple filaments

- Simple branched filaments may be attached to the substratum by a basal cell .
- ➢ In such filaments branches may arise from any cells except basal cell.
- ➢ In *cladophora* branches arise just below the septa between two adjecent cells.

Figure: Branched filamentous algae ; Cladophora (Simple branching)

ii) Heterotrichous

In this type thallus is very much evolved and differentiated into prostrate and erect system. e.g., *Fritschiella*, *Ectocarpus*, *Draparnaldiopsis*, *Coleochaete*, *Stigeoclonium*.

Figure: Heterotrichous branched filamentous algae; (A) *Fritschiella* (B) *Ectocarpus* (C) *Draparnaldiopsis*

Figure : (D) *Coleochaete*

> Both prostrate and erect systems may be well developed (*Fritschiella*, *Ectocarpus*) or there is progressive elimination of prostrate system (*Draparnaldiopsis*) or erect system (*Coleochaete*)

iii) Pseudoparenchymatous

In many filamentous forms one or more central or axial filaments, together with their branches form a parenchymatous structure .

If a pseudoparenchymatous thallus is formed by the branches of only one filament, it is called uniaxial (e.g., *Batrachospermum*).

If branches of more than one filaments are involved, it is said to be multiaxial (*e.g.*, *Polysiphonia*).

Figure: Pseudoparenchymatous algae ; (A) (Batrachospermum), (B-C) Polysiphonia

4. Siphonaceous forms

 \succ In siphonaceous forms thallus is made up of branched, aseptate, coenocytic, tubular filaments as the nuclear divisions are not accompanied by wall formation.

e.g., Vaucheria, Botrydium

Figure : Siphonaceous algae ; (A) Vaucheria (B) Botrydium

5. Parenchymatous forms

 \succ In parenchymatous forms the flat foliose or tubular thalli are formed by the divisions of cells in two or more planes.

➤ The daughter cells do not separate from the parent and give rise to parenchymatous thalli of various shapes , like flat (Ulva) tubular (Scytosiphon , Phaeophyceae) or complex (Sargassum).

➢ Growth of such thalli are apical (e.g., Fucus, Dictyota), Intercalary (e.g., Laminaria) or Trichothallic (e.g., Porphyra, Rhodophyceae)

Figure . Parenchymatous algae : (A) Ulva (B) Sargassum

Note: Figures are taken from the A text book of Botany by Singh, Pandey, Jain (Fifth edition) and internet source.

Dr. Ankit Kumar Singh

Assistant Professor Department of Botany Marwari College Lalit Narayan Mithila University Darbhanga ankitbhu30@gmail.com

Thank You!!!